Problem: 0(1(0(2(x1)))) -> 0(0(3(1(2(x1))))) 0(1(3(4(x1)))) -> 0(4(1(0(3(x1))))) 0(1(3(4(x1)))) -> 0(4(1(1(3(x1))))) 0(1(3(4(x1)))) -> 0(4(1(3(1(x1))))) 0(2(1(4(x1)))) -> 0(4(1(2(3(x1))))) 0(2(1(4(x1)))) -> 0(4(1(3(2(x1))))) 0(2(1(4(x1)))) -> 2(0(4(1(4(x1))))) 0(2(1(4(x1)))) -> 5(5(0(4(1(2(x1)))))) 0(2(1(5(x1)))) -> 5(0(4(1(2(x1))))) 0(2(2(4(x1)))) -> 0(4(2(2(5(x1))))) 0(2(2(4(x1)))) -> 0(4(2(5(2(x1))))) 3(4(0(2(x1)))) -> 3(0(4(5(2(x1))))) 3(4(0(2(x1)))) -> 3(5(0(4(2(x1))))) 0(0(1(4(5(x1))))) -> 0(4(1(0(3(5(x1)))))) 0(1(0(2(4(x1))))) -> 2(0(0(4(1(1(x1)))))) 0(1(2(3(4(x1))))) -> 2(0(4(1(0(3(x1)))))) 0(1(3(3(4(x1))))) -> 0(0(3(1(3(4(x1)))))) 0(1(4(0(2(x1))))) -> 0(4(1(5(0(2(x1)))))) 0(1(4(1(5(x1))))) -> 2(5(0(4(1(1(x1)))))) 0(1(4(3(4(x1))))) -> 0(4(0(3(1(4(x1)))))) 0(1(4(3(4(x1))))) -> 3(0(4(1(5(4(x1)))))) 0(1(4(3(5(x1))))) -> 5(4(5(0(3(1(x1)))))) 0(1(5(0(2(x1))))) -> 0(0(4(1(2(5(x1)))))) 0(1(5(1(4(x1))))) -> 4(5(0(3(1(1(x1)))))) 0(2(1(4(4(x1))))) -> 0(4(1(2(4(3(x1)))))) 0(2(1(4(5(x1))))) -> 0(4(1(2(5(2(x1)))))) 0(2(1(5(4(x1))))) -> 5(0(2(0(4(1(x1)))))) 0(2(4(1(5(x1))))) -> 5(0(4(1(5(2(x1)))))) 0(2(4(3(5(x1))))) -> 0(4(5(2(5(3(x1)))))) 0(2(5(1(4(x1))))) -> 0(0(5(4(1(2(x1)))))) 3(0(1(3(2(x1))))) -> 0(3(1(0(3(2(x1)))))) 3(0(2(1(4(x1))))) -> 4(0(4(1(3(2(x1)))))) 3(0(2(1(5(x1))))) -> 5(3(2(0(4(1(x1)))))) 3(0(4(0(2(x1))))) -> 0(3(4(0(4(2(x1)))))) 3(0(4(0(2(x1))))) -> 0(4(1(2(0(3(x1)))))) 3(0(5(1(4(x1))))) -> 3(0(4(1(1(5(x1)))))) 3(0(5(1(5(x1))))) -> 0(4(1(3(5(5(x1)))))) 3(2(4(1(2(x1))))) -> 3(1(2(2(5(4(x1)))))) 3(2(4(1(5(x1))))) -> 3(1(4(5(2(5(x1)))))) 3(4(0(1(2(x1))))) -> 0(4(2(0(3(1(x1)))))) 3(4(0(1(4(x1))))) -> 0(4(1(5(3(4(x1)))))) 3(4(0(1(5(x1))))) -> 0(4(1(5(5(3(x1)))))) 3(4(0(2(4(x1))))) -> 0(3(4(0(4(2(x1)))))) 3(4(1(2(4(x1))))) -> 0(4(1(2(4(3(x1)))))) 3(4(1(3(5(x1))))) -> 4(3(0(3(1(5(x1)))))) 3(4(3(0(2(x1))))) -> 3(3(0(4(1(2(x1)))))) 3(4(5(0(2(x1))))) -> 0(3(0(4(2(5(x1)))))) 3(5(0(2(2(x1))))) -> 0(3(2(5(2(5(x1)))))) 3(5(2(1(4(x1))))) -> 3(5(1(0(4(2(x1)))))) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {6,5} transitions: 31(32) -> 33* 31(7) -> 8* 31(179) -> 180* 31(29) -> 30* 31(21) -> 22* 31(138) -> 139* 31(23) -> 24* 51(97) -> 98* 51(77) -> 78* 51(119) -> 120* 51(181) -> 182* 51(76) -> 77* 51(163) -> 164* 51(103) -> 104* 51(190) -> 191* 51(175) -> 176* 51(140) -> 141* 51(105) -> 106* 51(95) -> 96* 51(85) -> 86* 11(50) -> 51* 11(127) -> 128* 11(189) -> 190* 11(149) -> 150* 11(129) -> 130* 11(9) -> 10* 11(161) -> 162* 11(121) -> 122* 11(116) -> 117* 11(178) -> 179* 11(73) -> 74* 11(115) -> 116* 01(75) -> 76* 01(152) -> 153* 01(52) -> 53* 01(164) -> 165* 01(139) -> 140* 01(11) -> 12* 01(188) -> 189* 01(118) -> 119* 41(65) -> 66* 41(10) -> 11* 41(187) -> 188* 41(182) -> 183* 41(117) -> 118* 41(74) -> 75* 41(49) -> 50* 41(151) -> 152* 41(141) -> 142* 41(71) -> 72* 41(51) -> 52* 41(143) -> 144* 41(63) -> 64* 21(177) -> 178* 21(87) -> 88* 21(47) -> 48* 21(39) -> 40* 21(176) -> 177* 21(86) -> 87* 21(41) -> 42* 21(31) -> 32* 21(153) -> 154* 21(53) -> 54* 21(8) -> 9* 00(2) -> 5* 00(4) -> 5* 00(1) -> 5* 00(3) -> 5* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 30(2) -> 6* 30(4) -> 6* 30(1) -> 6* 30(3) -> 6* 40(2) -> 3* 40(4) -> 3* 40(1) -> 3* 40(3) -> 3* 50(2) -> 4* 50(4) -> 4* 50(1) -> 4* 50(3) -> 4* 1 -> 127,97,65,41,23 2 -> 115,85,49,31,7 3 -> 129,103,71,47,29 4 -> 121,95,63,39,21 8 -> 143* 12 -> 30,8,143,6,5 22 -> 8* 24 -> 8* 30 -> 8* 32 -> 187,105,73 33 -> 9* 40 -> 32* 42 -> 32* 48 -> 32* 50 -> 175* 54 -> 5* 64 -> 50* 66 -> 50* 72 -> 50* 75 -> 163* 77 -> 5* 78 -> 5* 87 -> 181* 88 -> 149,10 96 -> 86* 98 -> 86* 104 -> 86* 106 -> 161,87 116 -> 151* 117 -> 138* 120 -> 53* 122 -> 116* 128 -> 116* 130 -> 116* 142 -> 5* 144 -> 8* 150 -> 10* 154 -> 75* 162 -> 74* 165 -> 11* 180 -> 22,33,8,143,9,6 183 -> 178* 191 -> 179* problem: Qed